Course ID 16OO01
Programme
  • Applied Informatics
ESPB 6
Number of classes 2+2
Semester 2
Status Core
The main objective of the course is to enable students to acquire basic knowledge in higher mathematics, understand mathematical methods and their application in solving specific economic problems, develop sense for precision and abstract thinking.
Theoretical training
• The basics of general mathematics.
• Elements of linear algebra and linear programming.
• Introduction to the theory of real functions of one and more variables with applications in economics.
• Elements of differential calculus functions of one and more variables with applications in economics.
• Undefined, specific integrals with applications in economics.
• Elements of financial mathematics.

Practical training
• Practice tasks and homework assignments that follow the content of the theoretical training.
Teorijska nastava

• Opšte matematičke osnove.

• Elementi linearne algebre i linearno programiranje.

• Uvod u teoriju realnih funkcija jedne i više promenljivih sa primenama u ekonomiji.

• Elementi diferencijalnog računa funkcija jedne i više promenljivih sa primenama u ekonomiji.

• Neodređeni, određeni integrali sa primenama u ekonomiji.

• Elementi finansijske matematike.



Praktična nastava

• Vežbe i domaći zadataci koji po sadržaju prate sadržaj teorijske nasteve.
Doroslovački, R., & Mijatović, M. (2008). Matematika. Novi Sad: Alfa-graf NS.

Boričić, B., Ivović, M., & Ilić, M. (2016). Matematika. Beograd: Centar za izdavačku delatnost Ekonomskog Fakulteta u Beogradu.

Ivović, M., Boričić, B., Azdejković, D., Stanojević, J., & Ilić M. (2016). Zbirka zadataka iz matematike. Beograd: Centar za izdavačku delatnost Ekonomskog Fakulteta u Beogradu.

Sydsaeter, K., & Hammond P. (2006). Essential Mathematics for Economic Analysis. Harlow, England: Prentice Hall.
Auditory lectures along with the support of modern learning tools and active participation of students. Work on practice classes includes: analysis of the taught material, computational exercises, applying the acquired knowledge on solving concrete examples from practice, analysis of student work.
Assessment (maximum number of points – 100)
Exam Requirements 35 points Final exam 65 points
Attendance 5 Written exam 65
Ongoing assessment 20 Oral exam  
Class participation 10  
Case  study